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This study proposes a method of automatic detection of epileptic seizure event and onset using wavelet based features and certain
statistical features without wavelet decomposition. Normal and epileptic EEG signals were classified using linear classifier. For
seizure event detection, Bonn University EEG database has been used. Three types of EEG signals (EEG signal recorded from
healthy volunteer with eye open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients
during epileptic seizures) were classified. Important features such as energy, entropy, standard deviation, maximum, minimum,
and mean at different subbands were computed and classification was done using linear classifier. The performance of classifier was
determined in terms of specificity, sensitivity, and accuracy. The overall accuracy was 84.2%. In the case of seizure onset detection,
the database used is CHB-MIT scalp EEG database. Along with wavelet based features, interquartile range (IQR) and mean absolute
deviation (MAD) without wavelet decomposition were extracted. Latency was used to study the performance of seizure onset

detection. Classifier gave a sensitivity of 98.5% with an average latency of 1.76 seconds.

1. Introduction

Epilepsy is one of the most prevalent neurological disorders
in human beings. It is characterized by recurring seizures in
which abnormal electrical activity in the brain causes the loss
of consciousness or a whole body convulsion. Patients are
often unaware of the occurrence of seizure due to the random
nature of them which may increase the risk of physical injury.
Studies show that 4-5% of the total world population has been
suffering from epilepsy [1].

Electroencephalogram is one of the important tools for
diagnosis and analysis of epilepsy. Electroencephalogram is
the recorded representation of electrical activity produced
by firing of neuron within the brain along the scalp. For
recording of EEG, electrodes will be pasted at some key
points on the patient’s head. Electrodes pick up the signals
and will be recorded in a recording device through wires
which are connected to electrodes. The “10-20” system is the
internationally recognized method to apply the location of
electrodes in EEG recording. The “10-20” refers to the fact that
actual distances between electrodes are either 10% or 20% of
front-back or right-left distance of the skull [2-4].

As complete visual analysis of EEG signal is very difficult,
automatic detection is preferred. Fourier transform has been

most commonly used in early days of processing of EEG
signals. However as EEG signal is a nonstationary signal,
Fourier analysis does not give accurate results [5-7]. Most
effective time-frequency analysis tool for analysis of transient
signal is wavelet transform [8-10].

The automated diagnosis of epilepsy can be subdivided
into preprocessing, feature extraction, and classification.
Seizure detection can be classified as either seizure onset
detection or seizure event detection. In seizure onset detec-
tion the purpose is to recognize the starting of seizure with
the shortest possible delay. The purpose of seizure event
detection is to identify seizures with the highest possible
accuracy [11-16].

For treatment of epilepsy, patients take antiepileptic drugs
on daily basis. But about 25% of them again experience
frequent seizures. For these patients, surgery is the most
important and generally adopted treatment method. Surgery
can be done only if epileptogenic focus is identified accu-
rately. For this purpose different types of tracers are used as
soon as seizure onset is detected. Hence the seizure onset
detection is very important [1].

Seizure detection from EEG signal was started since
1980s. In 1982 Gotman proposed a remarkable work on
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seizure detection [5]. Khan and Gotman proposed a wavelet
based method for classification of epileptic and nonepileptic
data [17]. In 2005 wavelet transform method and short time
Fourier transform method were compared to determine their
accuracy to determine the epileptic seizures. They found
that wavelet transform method gives better performance [18].
Ubeyli suggested the combined neural network model for the
classification using wavelet based features [12]. Their method
gave good accuracy in Bonn University data. In 2011, Gandhi
et al. made a comparative study of wavelet families for EEG
signal classification [11]. Important features such as energy,
entropy, and standard deviation at different subbands were
computed using wavelet decomposition. Feature vector was
used to model and train the probabilistic neural network
and classification accuracies were evaluated for each of the
wavelet families. The result obtained was compared with
support vector machine classifier.

An onset detection system was designed by Gotman and
Saab in 2004. They achieved a median detection delay of
9.8 sec and sensitivity of 77.9% using scalp EEG. Shoeb and
Guttag achieved 96% sensitivity and small detection delays
[6]. Sorensen et al. achieved 78-100% sensitivity when using
a matching pursuit algorithm and with 5-18 seconds delay in
seizure onset detection [19].

The outline of this study is as follows. Section 2 explains
about the materials and methods used in this study. It
includes wavelet transforms used for EEG signal processing,
parameters used for classification, linear classifier, terms used
to describe the performance of the classifier, and description
about databases. Section 3 includes results and discussions,
and the last section gives the conclusion.

2. Materials and Methods

2.1. Wavelet Transform. Wavelet transform is the represen-
tation of a time function in terms of simple, fixed building
blocks termed as wavelets. These building blocks are a family
of functions which are derived from a single generating
function called mother wavelets using translation and dila-
tion operations. The main advantage of wavelet transform
is that it has varying window size, being broad at low
frequency and narrow at high frequency. It leads to an
optimal time-frequency resolution in all frequency ranges. By
performing spectral analysis using wavelet transform, EEG
signals consisting of many data points can be compressed into
few features [20-23].

The wavelet transform can be categorized into continuous
and discrete types. Continuous wavelet transform is defined
as

()

CWT (a,b) = j (O, (0)dt, )

where x(t) represents the analyzed signal and a and b repre-
sent the scaling factor (dilation/compression coeflicient) and
translation along time axis (shifting coefficient), respectively.
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FIGURE 1: Subband decomposition of discrete wavelet transform
implementation.

The superscript asterisk denotes the complex conjugation.
¥, ,(-) is obtained by scaling the wavelet at time b and scale a:

¥, () = ﬁw <%> @)

where Y(t) represents the wavelet. In continuous W', the
scaling and translation parameters “a” and “b” change con-
tinuously. However, calculating wavelet coeflicients for every
possible scale can represent a considerable effort and result in
a vast amount of data. Therefore discrete wavelet transform
is commonly used. The wavelet transform can be thought
of as an extension of classic Fourier transform. Instead of
working on a single scale (time or frequency), it works on a
multiscale basis. Multiresolution decomposition of a signal
x[n] is schematically shown in Figure 1.

Each stage of this scheme consists of two digital filters
and two down samplers. The first filter g[-] is high pass
in nature and the second h[-] is its mirror version which
is low pass in nature. The downsampled outputs of first
high-pass and low-pass filters provide the detail D1 and
approximation Al, respectively. The first approximation Al is
further decomposed and this process is continued up to the
level we required as shown in Figure 1.

2.2. Parameters for Feature Extraction. The EEG signals,
which contain many data points, can be compressed into few
features that can discriminate between different classes. The
features used include some wavelet based features and some
statistical features without wavelet decomposition.

(1) Wavelet Based Features. Energy, entropy, standard devia-
tion, mean, maximum, and minimum were used as parame-
ters after wavelet decomposition.

The energy at each decomposition level was calculated as

N 2
ED, = YD, i=1,2..,1
j=1
J G)

N 2
EA, = ZI|A,.].| :
=

The entropy at each decomposition level was calculated as

N
ENT, = ) D log(D}), i=12,...,1, (4)
j=1
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wherei =1,2,...,11is wavelet decomposition level from 1to ]
and N is the number of coefficients of detail or approximation
at each decomposition level.

The standard deviation at each decomposition level was
calculated using the following equation:

1/2
1 ¥ 5 s
e 1,;(1)’7 —w)’ ] 5)

where y; is the mean and is given by

1N
wi=—YDy i=1,2..,L (6)
L5,

(2) Statistical Features without Wavelet Decomposition. In
latency study of seizure detection two statistical features: IQR
and MAD, were computed over raw data. IQR (interquartile
range) is a measure of statistical dispersion. It is the difference
between upper quartile (Q;) and lower quartile (Q,):

IQR = Q3 - Ql‘ (7)

MAD (mean absolute deviation) is the mean of absolute
deviation from mean.

2.3. Classifier. The extracted features should be distinguished
between normal and deviating cases. In classification stage all
the features will be given to a classifier. In seizure detection
problem this step is the classification between normal and
epileptic EEG. In the present study linear classifier is used for
classification.

In a linear classifier the classification is achieved by
making a decision based on the value of linear combination of
features. If the input features to the classifier are a real vector
X then the output score is

y:f(w'i):f<zwjxj>) (8)
j

where @ is a real vector of weights and f is a function that
converts the dot product of two vectors into the desired
output. The weight vector is computed using a set of labeled
training samples. Often f is simple function that maps all
the values above a certain threshold to the first class and all
other values to the second class. A more complex f might
give the probability that items belong to certain class. A linear
classifier is often used where speed of classification is an issue

[9].

(I) Performance of Classifier in Seizure Event Detection.
Specificity, sensitivity, and accuracy are used for determining
the performance of classifiers. They are defined as

number of true negative decisions

specificity = ,
P Y humber of actually negative cases
o number of true positive decisions
sensitivity = — )
number of actually positive cases
number of correct decisions
accuracy =

total number of cases

(2) Performance of Classifier in Seizure Onset Detection.
In seizure onset detection, performance of the detector is
described by latency and sensitivity. Latency is the delay
between the actual seizure onset and onset detected by the
detector. If the value of latency is close to 0 the detector will
have a good performance and if its value is far from 0 it will
have poor performance.

2.4. EEG Data Sets Used

(1) Data Set for Seizure Event Detection. Bonn University data
is used for the study of seizure event detection. The recording
was done using standard 10-20 electrode placement system.
The complete data sets consist of five sets each containing 100
channels which is named from A to E. Sets A and B consist
of EEG segments taken from surface EEG recording carried
out on five healthy volunteers. Volunteers were relaxed in
an awaken state with eyes open (A) and eyes closed (B),
respectively. Sets C, D, and E were taken from EEG archive of
presurgical diagnosis. Segments in set D were recorded from
the epileptogenic zone. Set C is recorded from hippocampal
formation of opposite hemisphere of brain. Sets C and D
contain only activity measured during seizure-free intervals.
Set E contains only seizure activity [24].

Data is recorded within 128-channel amplifier system and
digitized at 173.61 Hz sampling rate and 12 bit A/D resolution.
To select the EEG signal of desired band a band-pass filter
having a pass band of 0.53-40 Hz (12 dB/oct) was used. It was
cut out from continuous multichannel EEG recordings after
visual inspection for artifacts due to muscle activity or eye
movement.

(2) Data Set for Seizure Onset Detection. CHB-MIT scalp EEG
database is used for study of latency. It was collected from
Boston Children’s Hospital. The database consists of EEG
recordings with intractable seizures recorded from pediatric
subjects. Sampling rate of all signals is 256 samples per second
with a resolution of 16 bit. For recording the international 10-
20 system of EEG electrode positions and nomenclature were
used [6]. Table 1 gives a brief overview of database used for
latency study.

The EEG data set of each patient is segmented to records
of typically one hour long. Records that contain seizure and
that do not contain seizure are called seizure records and
nonseizure records, respectively.

3. Results and Discussion

3.1 Seizure Event Detection. In the present study the data
sets A, D, and E have been used. The data used has been
already gone through the preprocessing steps. One channel
consists of total 4096 samples. For one channel 16 rectangular
windows were formed which consists of 256 discrete data.

(1) Feature Extraction Using Discrete Wavelet Transform.
Selection of appropriate wavelet and the number of decom-
position levels are very important in the analysis of signals
using wavelet transform. The number of decomposition levels
is chosen based on the dominant frequency components of
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TABLE 1: An overview of CHB-MIT database.
Patient Age Gender Number of seizures
1 11 F 7
2 11 M 3
3 14 F 6
4 22 M 4
5 7 F 5
6 1.5 F 3
7 14.5 F 3
8 3.5 M 5
9 10 F 4
10 3 M 4
11 12 F 3
12 F 40
13 F 1
14 F 8
15 16 M 18
16 7 F 10
17 12 F 3
18 18 F 6
19 19 F 3
20 6 F 8
21 13 F 4
22 9 F 3
23 F 7
24 — — 16

the signal. The level of decomposition is chosen such that
the frequencies required for classification of the signal are
retained in the wavelet coefficients. In the present study
the number of decomposition levels was chosen to be 4.
Thus the EEG signals were decomposed into the details
D1-D4 and one final approximation A4. The smoothening
features of Daubechies wavelets of order 2 made it more
suitable to detect changes of EEG signals [9]. Therefore,
the wavelet coefficients were computed using Daubechies
wavelets of order 2. The wavelets coeflicients were computed
using MATLAB software package.

For each EEG segment, the detail wavelet coefficients
at first, second, third, and fourth levels and approximation
wavelet coefficients at fourth level were computed. In this
study only D3, D4 and A4 are used because these coeffi-
cients represents the frequency ranges of interest [12]. The
approximation coefficients at fourth level and detail wavelet
coeflicients at third and fourth levels of first frame of data set
E are shown in Figures 2, 3, and 4, respectively.

Tables 2, 3, and 4 show the extracted features of first
frames of data sets A, D, and E, respectively.

(2) Classification Using Linear Classifier. A linear classifier has
been trained such that it gives an output of 0 for normal EEG,
1 for set E, and 2 for set D. The calculated features were given
to this classifier. Out of total 16 frames 10 frames were used
for training the classifier and the rest 6 frames were used for
testing. Output of linear classifier has been shown in Table 5.
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FIGURE 2: Approximation coefficient at fourth decomposition level
of data set E (first frame of first channel).
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FIGURE 3: Detail wavelet coefficient at fourth decomposition level of
data set E (first frame of first channel).
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FIGURE 4: Detail wavelet coefficients at third decomposition level of
data set E (first frame of first channel).

Table 6 shows the classification accuracies of linear classi-
fier. Accuracy has been explained in terms of specificity, sen-
sitivity, and total classification accuracy. Total classification
accuracy achieved is 84.2%.

Some other researchers also worked on the same
database. Ubeyli [12] used wavelet based features along with
a combination of neural network classifiers. Song and Lio
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TABLE 2: Extracted features of first frame of data set A.

Extracted features D3 D4 A4
Maximum 75.7695 120.0146 192.677
Minimum -92.3744 -105.366 —-172.499
Mean 1.6022 2.1703 34.4130
Standard deviation 41.1865 60.3469 96.4623
Entropy 4.522¢ + 05 5.47e + 05 1.77e + 06
Energy 5.6e + 04 6.199¢ + 04 1.79¢ + 05

TABLE 3: Extracted features of first frame of data set D.

Extracted features D3 D4 A4
Maximum 44.34 88.24 320.44
Minimum -30.926 -89.15 -175.76
Mean 1.65 -2.63 94.15
Standard deviation 194 43.6354 126.3
Entropy 1.258e + 04 3.24e + 04 4.3e + 05
Energy 8.2e + 04 2.7e + 05 4.5e + 06

TABLE 4: Extracted features of first frame of data set E.

Extracted features D3 D4 A4
Maximum 1524.4000 1420.100 1639.200
Minimum -1508.9000 -117.0000 -1917.600
Mean 65.5614 ~77.2298 281.4010
Standard deviation 716.0870 614.2615 1138.500
Entropy 2.38¢e + 08 8.9¢e + 07 2.39e + 08
Energy 1.7e + 07 6.9¢ + 06 2.39e + 08

TaBLE 5: Confusion matrix of linear classifier output.

Testing set Set A SetD SetE
Set A 514 86 0
Set D 135 456 9
SetE 9 45 456
TaBLE 6: Classification accuracies.

Statistical parameters Db2
Specificity 85.6%
Sensitivity (set D) 76%
Sensitivity (set E) 91%
Total classification accuracy 84.2%

[25] used sample entropy as feature and back propagation and
extreme learning machine classifiers. Though the two works
reported better accuracy in classification, these classifications
are computationally rigorous. At the same time the present
work uses the simple linear classifier.

3.2. Seizure Onset Detection. In CHB-MIT database the dura-
tion of each seizure is different. Each seizure was divided into
frames of 1 second. Wavelet decomposition at four levels was
done using Daubechies wavelet of order 2 for every frame.
Six wavelet based features: maximum, minimum, mean,
standard deviation, energy, and entropy, were computed for
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FIGURE 5: Mean latency of each patient.

three wavelet coefficients, A4, D4, and D3 of last two levels
of decomposition. Along with these features, two statistical
features IQR and MAD were calculated for each channel of
each frame without wavelet decomposition.

Hence there are total 20 features for each channel of each
epoch. For each epoch a vector of 23 % 20 dimension was
formed because each epoch is having 23 channels. Since a
seizure is having T' such epochs a feature vector was formed
by placing them vertically and forming a feature vector of
(23 = T) = 20 dimension. This feature vector is for seizure
EEG signal. In the same procedure as discussed above feature
vector for normal EEG signal was calculated.

Classification was done using linear classifier to differen-
tiate between seizure and normal EEG. Normal and seizure
epochs were labeled using 0 and 1, respectively. Minimum
of 60% of seizures were used for training and the remaining
for testing for classification of each patient. Details about the
number of seizures used for training and testing are described
in Table 7. For example in the case of patient number 24, ten
seizures were used for training and 6 for testing.

Classifier will declare a seizure in an epoch if at least 60%
of channels show value of 1 as output. Latency and sensitivity
were used to describe the performance of classifier. Figure 5
shows the mean latency of each patient. From the graph it
is clear that zero latency is achieved in the case of patients
3,7, 8,12, and 17. The average latency was found to be 1.76
seconds. Figure 6 shows the sensitivity of the detector. All the
seizures except one seizure in patient 14 have been detected.
An average sensitivity of 98.5% has been achieved. Figure 7
shows the false detection percentage which is near zero for 13
patients.

The comparison of results with that reported by Shoeb
and Guttag [6] on the same database shows improvement
in terms of sensitivity from 96% to 98.5% and average
latency from 4.2 seconds to 1.76 seconds. Even though the
false positive rate shows no improvement, the latency and
sensitivity show much improvement.

4. Conclusion

In this work automatic detection methods of epileptic seizure
event and onset have been proposed. In the case of seizure
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TABLE 7: Number of seizures used for training and testing.
. Number of Number of
Patient Total number . .
. seizures used for seizures used for
number of seizures . .
training testing
1 7 5 2
2 3 2 1
3 6 4 2
4 4 3 1
5 5 3 2
6 5 3 2
7 3 2 1
8 5 3 2
9 4 3 1
10 4 3 1
1 3 2 1
12 40 24 16
13 11 8 3
14 8 5 3
15 18 1 7
16 10 6 4
17 3 2 1
18 6 4 2
19 3 2 1
20 8 5 3
21 4 3 1
22 3 2 1
23 7 4 3
24 16 10 6
16
14 +
s 12+
g
B 8}t
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g L
Z 4r
21
0
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Patient number

B Number of seizures tested
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FIGURE 6: Sensitivity of the detector.

event detection Bonn University data has been decomposed
with Daubechies wavelet of order 2 and six features such as
maximum, minimum, mean, standard deviation, energy, and
entropy were computed over the wavelet coefficients at third
and fourth levels. Classification has been done using linear
classifier and a total accuracy of 84.2% has been achieved.
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In the case of seizure onset detection, CHB-MIT database
has been used. Along with features used in seizure event
detection, interquartile range and mean absolute deviation
have been extracted. Latency and sensitivity are used to study
the performance of the linear classifier. A sensitivity of 98.5%
has been achieved with an average latency of 1.76 seconds.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are thankful to R. G. Andrzejak for their publicly
available data in Bonn University database. The authors are
also thankful to MIT and Boston Children’s Hospital for the
availability of Pediatric EEG data sets.

References

[1] Y. U. Khan, O. Farooq, and P. Sharma, “Automatic detection of
seizure onset in pediatric EEG,” International Joural of Embeded
Systems and Applications, vol. 2, no. 3, pp. 81-89, 2012.

[2] E. D. Ubeyli, “Statistics over features: EEG signals analysis,”
Computers in Biology and Medicine, vol. 39, no. 8, pp. 733-741,
2009.

[3] H. Adeli, Z. Zhou, and N. Dadmehr, “Analysis of EEG records
in an epileptic patient using wavelet transform,” Journal of
Neuroscience Methods, vol. 123, no. 1, pp. 69-87, 2003.

[4] S. Sanei and J. A. Chambers, EEG Signal Processing, Centre of
Digital Signal Processing, Cardiff University, Cardiff, UK, 2007.

[5] J. Gotman, “Automatic recognition of epileptic seizures in the
EEG,” Electroencephalography and Clinical Neurophysiology, vol.
54, no. 5, pp. 530-540, 1982.

[6] A. Shoeb and J. Guttag, “Application of machine learning to
epileptic seizure detection,” in Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML ’10), pp. 975-982,
Haifa, Israel, June 2010.

[7] N. Sivasankari and K. Thanushkodi, “Automated epileptic
seizure detection in EEG signals using FastICA and neural net-
work,” International Journal of Advances in Soft Computing and
Its Applications, vol. 1, no. 2, pp. 91-104, 2009.



BioMed Research International

(8]

(10]

(11

(16]

(20]

(21]

(22]

(23]

E. D. Ubeyli, “Wavelet/mixture of experts network structure
for EEG signals classification,” Expert Systems with Applications,
vol. 34, no. 3, pp- 1954-1962, 2008.

T. Fathima, M. Bedeeuzzaman, O. Farooq, and Y. U. Khan,
“Wavelet based feature for Epileptic Seizure Detection,” MES
Journal of Technology and Management, vol. 2, no. 1, pp. 108-
112, 2011.

I. Daubechies, “Wavelet transform, time-frequency localization
and signal analysis,” IEEE Transactions on Information Theory,
vol. 36, no. 5, pp- 961-1005, 1990.

T. Gandhi, B. K. Panigrahi, M. Bhatia, and S. Anand, “Expert
model for detection of epileptic activity in EEG signature,”
Expert Systems with Applications, vol. 37, no. 4, pp. 3513-3520,
2010.

E. D. Ubeyli, “Combined neural network model employing
wavelet coeflicients for EEG signals classification,” Digital Signal
Processing, vol. 19, no. 2, pp- 297-308, 2009.

H. Qu and J. Gotham, “A patient-specific algorithm for the
detection of seizure onset in long- term EEG monitoring: pos-
sible use as a warning device,” IEEE Transactions on Biomedical
Engineering, vol. 44, no. 2, pp. 115-122,1997.

K. C. Chua, V. Chandran, R. Aeharya, and C. M. Lim, “Higher
order spectral (HOS) analysis of epileptic EEG signals,” in
Proceedings of the 29th Annual International Conference of IEEE-
EMBS, Engineering in Medicine and Biology Society (EMBC '07),
pp. 6495-6498, August 2007.

L. Yaylali, H. Kogak, and P. Jayakar, “Detection of seizures from
small samples using nonlinear dynamic system theory; IEEE
Transactions on Biomedical Engineering, vol. 43, no. 7, pp. 743—-
751, 1996.

M. Niknazar, S. R. Mousavi, B. Vosoughi Vahdat, M. B. Shamso-
llahi, and M. Sayyah, “A new dissimilarity index of EEG
signals for epileptic seizure detection,” in Proceedings of the
4th International Symposium on Communications, Control, and
Signal Processing (ISCCSP ’10), Limassol, Cyprus, March 2010.
Y. U. Khan and J. Gotman, “Wavelet based automatic seizure
detection in intracerebral electroencephalogram,” Clinical Neu-
rophysiology, vol. 114, no. 5, pp. 898-908, 2003.

M. K. Kiymik, I. Giiler, A. Dizibiiyiik, and M. Akin, “Compar-
ison of STFT and wavelet transform methods in determining
epileptic seizure activity in EEG signals for real-time applica-
tion,” Computers in Biology and Medicine, vol. 35, no. 7, pp. 603
616, 2005.

T. L. Sorensen, U. L. Olsen, I. Conradsen et al., “Automatic
epileptic seizure onset detection using Matching Pursuit: a case
study;” in Proceedings of the Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC
’10), pp. 3277-3280, 2010.

M. Unser and A. Aldroubi, “A review of wavelets in biomedical
applications,” Proceedings of the IEEE, vol. 84, no. 4, pp. 626-
638, 1996.

N. Hazarika, J. Z. Chen, A. C. Tsoi, and A. Sergejew, “Clas-
sification of EEG signals using the wavelet transform,” Signal
Processing, vol. 59, no. 1, pp. 61-72,1997.

J. Engel Jr., “A proposed diagnostic scheme for people with
epileptic seizures and with epilepsy: report of the ILAE task
force on classification and terminology,” Epilepsia, vol. 42, no.
6, pp. 796-803, 2001.

Y. U. Khan and O. Farooq, “Autoregressive features based
classification for seizure detection using neural network in scalp
Electroencephalogram,” International Journal of Biomedical
Engineering and Technology, vol. 2, no. 4, pp. 370-381, 2009.

[24]

R. G. Andrzejak, K. Lehnertz, E Mormann, C. Rieke, P. David,
and C. E. Elger, “Indications of nonlinear deterministic and
finite-dimensional structures in time series of brain electrical
activity: dependence on recording region and brain state;
Physical Review E, vol. 64, no. 6, Article ID 061907, pp. 1-8, 2001.
Y. Song and P. Lio, “A new approach for epileptic seizure
detection: sample entropy based feature extraction and extreme
learning machine,” Journal of Biomedical Science and Engineer-
ing, vol. 3, no. 6, pp. 556-567, 2010.



